Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

MAGNETO VS. BATTERY IGNITION

1917-01-01
170050
This paper discusses the principles of battery ignition and then describes high-tension magneto ignition. A comparison between the two types of ignition is given, and the paper concludes by illustrating diagrammatically how and why a very hot spark causes the engine to produce more power and to economize on fuel consumption.
Technical Paper

DESIGN OF AN ENDURING TRACTOR

1917-01-01
170049
After a few general introductory remarks the author outlines the operating requirements for tractors, and takes up the matter of the proper sizes of tractors, stated in horsepowers per given number of plows. The use of lower-grade fuels, value of water in the engine, cylinder construction, methods of lubrication and design of drive-wheels are the subjects covered by the balance of the paper.
Technical Paper

SOLVING THE GASOLINE PROBLEM

1917-01-01
170047
The author first compares mineral oils with certain other liquids in order to point out clearly certain of their characteristics. He then shows the economic benefits that would result from making more of the crude available for use as fuels. He discusses such topics as cracking methods in use, advantages of dry gas, initial flame propagation, gas producers, hot mixtures, wet mixtures and difficulties of correcting existing engines. He concludes by proposing as a solution of the gasoline problem the more general use of superheated homogeneous fixed dry gases made in vaporizing devices independent of engine cylinders, and outlines means for attaining this end. Performance data covering the use of mixtures of kerosene and gasoline on several cars are included in a table, and several charts throughout the paper illustrate many of the topics discussed.
Technical Paper

METROPOLITAN SECTION PAPERS TREATMENT OF HYDROCARBON FUELS

1917-01-01
170046
The author states that the objects of the paper are to define and trace the development of the various processes of carburetion, and to offer such suggestions along these lines as may assist the investigator in developing motorboats, automobiles and self-contained unit motor cars for railway purposes. The surface carburetor is mentioned chiefly as of historic interest. In considering the jet carbureter the author discusses the proportion of gas desired, the effect of the varying inertia of the air and the liquid gasoline and the breaking up of the combustible needed. Following sections review the devices for using kerosene, such as gasoline jet carbureters to which heat is applied, devices of the fixed gas type, the introduction of combustible directly into the cylinder, forcing combustible directly upon a hot surface in the cylinder and devices which raise the combustible to the boiling point.
Technical Paper

LABORATORY TESTING IN THE AUTOMOTIVE INDUSTRY

1917-01-01
170043
This paper emphasizes the importance of using standardized testing equipment in order that mental calculations may be avoided in interpreting the reports of other engineers. The situation and environments of the engine-testing plant, cooperation among the men conducting tests, standardized methods of conducting tests, value of venturi meters and testing of accessories are among the subjects discussed in the first part of the paper. The subject of the testing of engine cooling systems is treated at some length, the importance of obtaining operating conditions being emphasized. The paper concludes with two sections covering spark-plug testing and tests for preignition.
Technical Paper

AVIATION ENGINE DEVELOPMENT

1917-01-01
170042
This paper first traces the early development of aviation engines in various countries. The six-cylinder Mercedes, V-type twelve-cylinder Renault, and six-cylinder Benz engines are then described in detail and illustrated. Various types of Sunbeam, Curtiss, and Austro-Daimler are also described. The effect of offset crankshafts, as employed on the Benz and Austro-Daimler engines, is illustrated by pressure and inertia diagrams and by textual description. The paper concludes with a section on the requirements as to size of aviation engines, four curves showing the changing conditions which affect the engine size requirements. These curves relate to variations of temperature, air density, engine speed, airplane speed and compression ratio required to compensate for decrease in air density, all as related to varying altitude.
Technical Paper

PROBLEMS OF CRANKSHAFT DESIGN

1917-01-01
170040
The forces necessary to induce and maintain gasoline engine speeds of 3000 r.p.m. or faster, as well as other forces closely associated with high speeds, are numerous. The author has, however, confined his discussion to the three most important groups of forces upon which, in the main, the smooth running and the life of an engine depend. The different component forces were determined in respect to two engines of equal capacity for twenty-four crank positions, uniformly spaced at intervals of 30 degrees, which constitutes two revolutions and one complete cycle in the case of four-stroke cycle engines. Medium-sized six and twelve-cylinder engines were chosen for investigation. Corresponding components were combined as resultant forces and graphically represented in magnitude and direction. Several such characteristic diagrams of the resultant forces acting upon crankpins and main bearings of the two engines investigated are reproduced throughout the paper.
Technical Paper

ELECTRIC TRANSMISSION ON OWEN CARS

1916-01-01
160041
This paper contains a brief description of the Entz electric transmission. Wiring connections are given of the several speeds, for electric braking, for starting the engine and for charging the battery. The statement is made that the electric transmission eliminates and does the work of the friction clutch, the clutch pedal, the transmission gears, the flywheel and separate starting and lighting systems.
Technical Paper

FOUR-CYLINDER ENGINES OF TO-DAY*

1916-01-01
160043
The paper gives the value of certain factors in engine design that are good practice and uses these values to calculate the horsepower of a four-cylinder engine. The author holds that the deciding factor in comparing four-cylinder engines with those of the same displacement but with a greater number of cylinders, is the thermal efficiency. Both the cooling medium and the mechanical losses increase in proportion to the number of cylinders. He suggests in closing, that the demand for power output beyond the possibilities of four cylinders must be met by the use of a greater number.
Technical Paper

FIELD OF FOUR-CYLINDER ENGINES*

1916-01-01
160042
The author confines his discussion to engines used on pleasure cars, inasmuch as practically all commercial vehicles use the four-cylinder type. The performance expected of their cars by automobile owners is outlined, particularly as regards performance, durability and maintenance cost. In-asmuch as the horsepower required is often determined by the acceleration demanded, the argument in favor of four-cylinder engines is based mainly on a comparison of its acceleration performance with those of engines having a larger number of cylinders. A number of acceleration curves are given for these engines. The paper next considers smoothness of operation at low, medium and high running speeds, asserting that the decrease in inertia forces due to lighter reciprocating parts has made it possible to increase the speed and thus reduce remarkably the vibration of the four-cylinder engine.
Technical Paper

CARBURETER INVESTIGATIONS

1916-01-01
160035
The results are given of laboratory investigations made of a number of different types of carbureters, showing the relation between their gasoline and air consumptions over a wide range. This relation is plotted on so-called quality diagrams, on which is indicated the range between which high power and high efficiency can be expected. A description is given of a carbureter arranged in two stages, the first being used at light load and the second coming into action when the throttle is nearly open, thereby more than doubling the carbureter capacity. Engine performance curves are presented showing the result when only one or both stages of this carbureter are used.
Technical Paper

FACTORS IN UNIVERSAL JOINT DESIGN

1916-01-01
160036
The author considers the effects of velocity variation on the operation of a car and states that this variation is absorbed mainly by the flywheel. A formula is given for calculating the pressure on universal bearings. Various methods of protecting and lubricating joints are described. A number of European types of joints are illustrated. A much larger number of types of joints are used abroad in-asmuch as each maker usually makes his own design instead of purchasing it from a specialist as is the usual practice in this country. In conclusion the paper describes types of joints using flexible material, such as leather or spring steel.
Technical Paper

PROBLEMS IN HIGH-SPEED ENGINE DESIGN

1916-01-01
160023
The author outlines in a general way the relation of car performance to modern engine development. He considers particularly weight reduction and torque performance of high-speed engines, giving the undesirable characteristics attending the increased torque range gained by higher speed. He next discusses the relation of torque to total car weight, to acceleration and to hill-climbing ability and suggests a method of determining the value of a car in terms of its performance ability. The author holds incorrect those systems in which the amount of lubrication is in proportion to speed only; and in which oil for crankshaft and crankpin bearings must cool as well as lubricate them. He shows a system designed to solve these oiling problems. Static, running and distortion balance of a rotating mass are defined by the author, who shows how they apply to a large number of types of crankshafts.
Technical Paper

KEROSENE VERSUS GASOLINE IN AUTOMOBILE ENGINES

1916-01-01
160022
The author outlines the factors leading to the present high cost of automobile fuel, states that the introduction of new distillation processes will not solve the problem, but that the development of kerosene-utilizing appliances will produce results satisfactory to everybody. It is stated why kerosene cannot be used on the present gasoline cars. The adaptation of the gasoline automobile engine to the use of heavier fuels than will vaporize without the use of heat is entirely a problem of heating and heaters. The author reviews at length the principles embodied in and the construction of the heated vaporizers or vaporizing heaters now used in stationary and traction kerosene engines and in alcohol engines, giving illustrations of a number of such devices. After thus developing what in his opinion are desirable and good principles, the author describes a form of vaporizer embodying such principles, which he states has had successful trials (both block and road) in automobile service.
X